Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917152

RESUMO

A novel Gram-stain-negative, aerobic, rod-shaped bacterium, designated as HL-NP1T, was isolated from the surface water of the northwestern Pacific Ocean after enrichment cultivation using the organic phosphorous compound of 2-aminoethylphosphonate. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Jiella, with the highest similarity to Jiella pacifica 40Bstr34T (98.7 %). The complete genome sequence of strain HL-NP1T comprised a circular chromosome of 5.58 Mbp and two circular plasmids of 0.15 and 0.22 Mbp. Comparison of the genome sequences between strains HL-NP1T and J. pacifica 40Bstr34T revealed that average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values (88.0, 86.4 and 33.9 %, respectively) were below the recommended cut-off levels for delineating bacterial species. Strain HL-NP1T showed optimal growth at 30 °C, pH 6.5-7.0, with 2.0-2.5 % (w/v) NaCl. The sole respiratory quinone was ubiquinone-10. The predominant fatty acid was summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, an unidentified aminolipid and four unidentified lipids. The G+C content of the genomic DNA was 65.1 %. Based on phylogenetic, genotypic, phenotypic and chemotaxonomic data, strain HL-NP1T is proposed to represent a novel species of the genus Jiella, for which the name Jiella pelagia sp. nov. is proposed. The type strain is HL-NP1T (= KCCM 90499T = JCM 35838T).


Assuntos
Alphaproteobacteria , Organofosfonatos , Composição de Bases , Ácidos Graxos/química , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Água do Mar
2.
Viruses ; 15(10)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37896838

RESUMO

Cold-active bacteriophages are bacterial viruses that infect and replicate at low temperatures (≤4 °C). Understanding remains limited of how cold-active phage-host systems sustain high viral abundance despite the persistently low temperatures in pelagic sediments in polar seas. In this study, two Pseudoalteromonas phages, ACA1 and ACA2, were isolated from sediment core samples of the continental shelf in the western Arctic Ocean. These phages exhibited successful propagation at a low temperature of 1 °C and displayed typical myovirus morphology with isometric icosahedral heads and contractile tails. The complete genome sequences of phages ACA1 and ACA2 were 36,825 bp and 36,826 bp in size, respectively, sharing almost the same gene content. These are temperate phages encoding lysogeny-related proteins such as anti-repressor, immunity repressor and integrase. The absence of cross-infection between the host strains, which were genomically distinct Pseudoalteromonas species, can likely be attributed to heavy divergence in the anti-receptor apparently mediated by an associated diversity-generating retroelement. HHpred searching identified genes for all of the structural components of a P2-like phage (family Peduoviridae), although the whole of the Peduoviridae family appeared to be divided between two anciently diverged tail modules. In contrast, Blast matching and whole genome tree analysis are dominated by a nonstructural gene module sharing high similarity with Pseudoalteromonas phage C5a (founder of genus Catalunyavirus). This study expands the knowledge of diversity of P2-like phages known to inhabit Peudoalteromonas and demonstrates their presence in the Arctic niche.


Assuntos
Bacteriófagos , Pseudoalteromonas , Bacteriófagos/genética , Pseudoalteromonas/genética , Genoma Viral , Lisogenia , Genômica , Filogenia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37561014

RESUMO

A Gram-stain-negative, facultatively anaerobic, non-motile, rod-shaped bacterial strain, designated HL-MP18T, was isolated from Arctic seawater after a prolonged incubation employing polypropylene as the sole carbon source. Phylogenetic analyses of the 16S rRNA gene sequence revealed that strain HL-MP18T was affiliated to the genus Roseovarius with close relatives Roseovarius carneus LXJ103T (96.8 %) and Roseovarius litorisediminis KCTC 32327T (96.5 %). The complete genome sequence of strain HL-MP18T comprised a circular chromosome of 3.86 Mbp and two circular plasmids of 0.17 and 0.24 Mbp. Genomic comparisons based on average nucleotide identity and digital DNA-DNA hybridization showed that strain HL-MP18T was consistently discriminated from its closely related taxa in the genus Roseovarius. Strain HL-MP18T showed optimal growth at 25 °C, pH 7.0 and 2.5 % (w/v) sea salts. The major cellular fatty acids were C18 : 1 ω6c and/or C18 : 1 ω7c (49.6 %), C19 : 0 cyclo ω8c (13.5 %), and C16 : 0 (12.8 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and three unidentified lipids. The genomic DNA G+C content of the strain was 59.2 mol%. The phylogenetic, genomic, phenotypic and chemotaxonomic results indicate that strain HL-MP18T is distinguishable from the recognized species of the genus Roseovarius. Therefore, we propose that strain HL-MP18T represents a novel species belonging to the genus Roseovarius, for which the name Roseovarius pelagicus sp. nov. is proposed. The type strain is HL-MP18T (=KCCM 90405T=JCM 35639T).


Assuntos
Bactérias Anaeróbias Gram-Negativas , Polipropilenos , Rhodobacteraceae , Regiões Árticas , Rhodobacteraceae/classificação , Rhodobacteraceae/enzimologia , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Genoma Bacteriano/genética , Bactérias Anaeróbias Gram-Negativas/classificação , Bactérias Anaeróbias Gram-Negativas/genética , Bactérias Anaeróbias Gram-Negativas/isolamento & purificação , Polipropilenos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
4.
Viruses ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515163

RESUMO

ΦGT1 is a lytic podovirus of an alphaproteobacterial Sulfitobacter species, with few closely matching sequences among characterized phages, thus defying a useful description by simple sequence clustering methods. The history of the ΦGT1 core structure module was reconstructed using timetrees, including numerous related prospective prophages, to flesh out the evolutionary lineages spanning from the origin of the ejectosomal podovirus >3.2 Gya to the present genes of ΦGT1 and its closest relatives. A peculiarity of the ΦGT1 structural proteome is that it contains two paralogous tubular tail A (tubeA) proteins. The origin of the dual tubeA arrangement was traced to a recombination between two more ancient podoviral lineages occurring ~0.7 Gya in the alphaproteobacterial order Rhizobiales. Descendants of the ancestral dual A recombinant were tracked forward forming both temperate and lytic phage clusters and exhibiting both vertical transmission with patchy persistence and horizontal transfer with respect to host taxonomy. The two ancestral lineages were traced backward, making junctions with a major metagenomic podoviral family, the LUZ24-like gammaproteobacterial phages, and Myxococcal phage Mx8, and finally joining near the origin of podoviruses with P22. With these most conservative among phage genes, deviations from uncomplicated vertical and nonrecombinant descent are numerous but countable. The use of timetrees allowed conceptualization of the phage's evolution in the context of a sequence of ancestors spanning the time of life on Earth.


Assuntos
Bacteriófagos , Podoviridae , Estudos Prospectivos , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/química , Podoviridae/genética , Prófagos/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-36951926

RESUMO

A Gram-stain-negative, aerobic, rod-shaped bacterial strain, designated HL-LV01T, was isolated from the intestinal tract content of the Pacific white shrimp Litopenaeus vannamei. The 16S rRNA gene sequence of strain HL-LV01T showed that the strain was clearly a member of the genus Maribacter. According to the phylogenetic analyses, strain HL-LV01T was most closely related to the species Maribacter flavus KCTC 42508T with 98.2 % sequence similarity. The average nucleotide identity and digital DNA-DNA hybridization values between strain HL-LV01T and M. flavus KCTC 42508T were 80.6 % and 23.0 %, respectively, indicating different genomic species in the genus Maribacter. Strain HL-LV01T showed optimal growth at 35 °C, pH 7.0, and 2.5 % (w/v) sea salts. The major cellular fatty acids were iso-C15 : 0 (32.5 %), iso-C17 : 0 3-OH (22.3 %), and iso-C15 : 1 G (15.5 %). The major respiratory quinone was menaquinone-6. The polar lipids consisted of phosphatidylethanolamine, three unidentified aminolipids, and seven unidentified lipids. The genomic DNA G+C content of the strain was 39.8 mol%. The comprehensive phylogenetic, genomic, phenotypic, and chemotaxonomic results indicate that strain HL-LV01T is distinct from validly published species of the genus Maribacter. Hence, we propose strain HL-LV01T as a novel species belonging to the genus Maribacter, for which the name Maribacter litopenaei sp. nov. is proposed. The type strain is HL-LV01T (= KCCM 90498T = JCM 35709T).


Assuntos
Ácidos Graxos , Flavobacteriaceae , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Vitamina K 2/química
6.
Microbiome ; 10(1): 157, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36167684

RESUMO

BACKGROUND: DNA methylation in prokaryotes is involved in many different cellular processes including cell cycle regulation and defense against viruses. To date, most prokaryotic methylation systems have been studied in culturable microorganisms, resulting in a limited understanding of DNA methylation from a microbial ecology perspective. Here, we analyze the distribution patterns of several microbial epigenetics marks in the ocean microbiome through genome-centric metagenomics across all domains of life. RESULTS: We reconstructed 15,056 viral, 252 prokaryotic, 56 giant viral, and 6 eukaryotic metagenome-assembled genomes from northwest Pacific Ocean seawater samples using short- and long-read sequencing approaches. These metagenome-derived genomes mostly represented novel taxa, and recruited a majority of reads. Thanks to single-molecule real-time (SMRT) sequencing technology, base modification could also be detected for these genomes. This showed that DNA methylation can readily be detected across dominant oceanic bacterial, archaeal, and viral populations, and microbial epigenetic changes correlate with population differentiation. Furthermore, our genome-wide epigenetic analysis of Pelagibacter suggests that GANTC, a DNA methyltransferase target motif, is related to the cell cycle and is affected by environmental conditions. Yet, the presence of this motif also partitions the phylogeny of the Pelagibacter phages, possibly hinting at a competitive co-evolutionary history and multiple effects of a single methylation mark. CONCLUSIONS: Overall, this study elucidates that DNA methylation patterns are associated with ecological changes and virus-host dynamics in the ocean microbiome. Video Abstract.


Assuntos
Bacteriófagos , Microbiota , Bacteriófagos/genética , DNA , Metilação de DNA/genética , Metagenoma/genética , Metagenômica , Metiltransferases/genética , Microbiota/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-35348450

RESUMO

Gram-stain-negative, strictly aerobic, red-pink-coloured, rod-shaped and non-motile bacterial strains PAMC 29290, PAMC 29294T and PAMC 29296 were isolated from marine surface sediment sampled in the East Siberian Sea and strains PAMC 26553 and PAMC 26554T were obtained from an Antarctic lichen. Strains PAMC 29290, PAMC 29294T and PAMC 29296 were closely related to Hymenobacter artigasi (98.8 % 16S rRNA gene similarity), Hymenobacter antarcticus (97.3 %) and Hymenobacter glaciei (96.9 %), and PAMC 26553 and PAMC 26554T showed high similarity to Hymenobacter ginsengisoli (97.0 %), Hymenobacter rivuli (96.1 %) and Hymenobacter setariae (95.9 %). Genomic relatedness analyses showed that strains PAMC 29290, PAMC 29294T and PAMC 29296 could be distinguished from H. artigasi by average nucleotide identity (ANI; 93.1-93.2 %) and digital DNA-DNA hybridization (dDDH; 50.3-51.0 %) values. Strains PAMC 26553 and PAMC 26554T could be clearly distinguished from H. ginsengisoli with ANI values <79.8 % and dDDH values <23.3 %. The major fatty acids of strains PAMC 29290, PAMC 29294T and PAMC 29296 were C15 : 0 iso (21.0-26.0 %), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 17.4-18.2 %), C15 : 0 anteiso (12.7-19.1 %) and summed feature 4 (C17 : 1 iso I and/or anteiso B; 8.6-16.1 %) and those of strains PAMC 26553 and PAMC 26554T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 20.7-22.2 %), C15 : 0 anteiso (17.5-19.7 %) and summed feature 4 (C17 : 1 iso I and/or anteiso B; 15.5-18.1 %). The major respiratory quinone was MK-7. The genomic DNA G+C contents were 60.6-60.8 mol%. The polar lipids of PAMC 29294T were found to consist of phosphatidylethanolamine, four unidentified aminolipids, an unidentified aminophospholipid and five unidentified lipids; those of PAMC 26554T were phosphatidylethanolamine, three unidentified aminolipids, four unidentified aminophospholipid and two unidentified lipids. The distinct phylogenetic position and some physiological characteristics distinguished the novel strains from closely related type strains in the genus Hymenobacter. Thus, two novel species are proposed, with the names Hymenobacter siberiensis sp. nov. (type strain, PAMC 29294T=KCTC 82466T=JCM 34574T) and Hymenobacter psoromatis sp. nov. (type strain, PAMC 26554T=KCTC 82464T=JCM 34572T), respectively.


Assuntos
Líquens , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Sci Total Environ ; 822: 153360, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35085628

RESUMO

This study investigated the abundance and diversity of antibiotic resistance genes (ARGs) and the composition of bacterial communities along a transect covering the western Pacific Ocean (36°N) to the Southern Ocean (74°S) using the Korean icebreaker R/V Araon (total cruise distance: 14,942 km). The relative abundances of ARGs and bacteria were assessed with quantitative PCR and next generation sequencing, respectively. The absolute abundance of ARGs was 3.0 × 106 ± 1.6 × 106 copies/mL in the western Pacific Ocean, with the highest value (7.8 × 106 copies/mL) recorded at a station in the Tasman Sea (37°S). The absolute abundance of ARGs in the Southern Ocean was 1.8-fold lower than that in the western Pacific Ocean, and slightly increased (0.7-fold) toward Terra Nova Bay in Antarctica, possibly resulting from natural terrestrial sources or human activity. ß-Lactam and tetracycline resistance genes were dominant in all samples (88-99%), indicating that they are likely the key ARGs in the ocean. Correlation and network analysis showed that Bdellovibrionota, Bacteroidetes, Cyanobacteria, Margulisbacteria, and Proteobacteria were positively correlated with ARGs, suggesting that these bacteria are the most likely ARG carriers. This study highlights the latitudinal profile of ARG distribution in the open ocean system and provides insights that will help in monitoring emerging pollutants on a global scale.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/análise , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Oceanos e Mares
9.
Int J Syst Evol Microbiol ; 70(8): 4698-4703, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32701426

RESUMO

A Gram-stain-negative, non-motile, facultatively anaerobic and rod-shaped bacterial strain, designated PAMC 28131T, was isolated from a sea surface microlayer sample in the open water of the Pacific Ocean. Phylogenetic analysis of the 16S rRNA gene sequence of strain PAMC 28131T revealed an affiliation to the genus Sandaracinobacter with the closest species Sandaracinobacter sibiricus RB16-17T (sequence similarity of 98.2 %). Strain PAMC 28131T was able to grow optimally with 0.5-1.0 % NaCl and at pH 6.5-7.0 and 30 °C. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, an unidentified aminolipid, an unidentified glycolipid and an unidentified lipid. The major cellular fatty acids (>10 %) were C18 : 1 ω6c and/or C18 : 1 ω7c, (42.6 %), C17 : 1 ω6c (19.3 %) and C16 : 1 ω6c and/or C16 : 1 ω7c (15.8 %), and the respiratory quinone was Q-10. The genomic DNA G+C content was 65.3 mol%. The phylogenetic, phenotypic and chemotaxonomic data showed that strain PAMC 28131T could be clearly distinguished from S. sibiricus RB16-17T. Thus, strain PAMC 28131T should be classified as representing a novel species in the genus Sandaracinobacter, for which the name Sandaracinobacter neustonicus sp. nov. is proposed. The type strain is PAMC 28131T (=KCCM 43127T=JCM 30734T).


Assuntos
Filogenia , Água do Mar/microbiologia , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Oceano Pacífico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/isolamento & purificação
10.
Int J Syst Evol Microbiol ; 70(6): 3832-3838, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32511084

RESUMO

Gram-stain-negative, aerobic and rod-shaped bacterial strains, designated SSM26T and SSM44, were isolated from a sea surface microlayer sample from the Ross Sea, Antarctica. Analysis of the 16S rRNA gene sequences of strains SSM26T and SSM44 revealed a clear affiliation with the genus Pseudomonas. Based on the results of phylogenetic analysis, strains SSM26T and SSM44 showed the closest phylogenetic relationship with the species Pseudomonas sabulinigri KCTC 22137T with the 16S rRNA gene sequence similarity level of 98.5 %. Strains SSM26T and SSM44 grew optimally at 30 °C, pH 7.0-7.5 and 0.5-10.0 % NaCl (w/v). The major cellular fatty acids were C18 : 1 ω7c (31.3-34.9 %), C16 : 0 (15.5-20.2 %), summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c; 19.5-25.4 %) and C12 : 0 (6.0-9.3 %). The genomic DNA G+C content of each strain was 56.2 mol%. Genomic relatedness analyses based on the average nucleotide identity and the genome-to-genome distance showed that strains SSM26T and SSM44 constituted a single species that was clearly distinguishable from its phylogenetically close relatives. The combined phenotypic, chemotaxonomic, genomic and phylogenetic data also showed that strains SSM26T and SSM44 could be distinguished from validly published members of the genus Pseudomonas. Thus, these strains should be classified as representing a novel species in the genus Pseudomonas, for which the name Pseudomonas neustonica sp. nov. is proposed with the type strain SSM26T (=KCCM 43193T=JCM 31284T=PAMC 28426T) and a sister strain SSM44 (=KCCM 43194=JCM 31285=PAMC 28427).


Assuntos
Filogenia , Pseudomonas/classificação , Água do Mar/microbiologia , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Nat Commun ; 10(1): 5786, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857591

RESUMO

Recent recession of the Larsen Ice Shelf C has revealed microbial alterations of illite in marine sediments, a process typically thought to occur during low-grade metamorphism. In situ breakdown of illite provides a previously-unobserved pathway for the release of dissolved Fe2+ to porewaters, thus enhancing clay-rich Antarctic sub-ice shelf sediments as an important source of Fe to Fe-limited surface Southern Ocean waters during ice shelf retreat after the Last Glacial Maximum. When sediments are underneath the ice shelf, Fe2+ from microbial reductive dissolution of illite/Fe-oxides may be exported to the water column. However, the initiation of an oxygenated, bioturbated sediment under receding ice shelves may oxidize Fe within surface porewaters, decreasing dissolved Fe2+ export to the ocean. Thus, we identify another ice-sheet feedback intimately tied to iron biogeochemistry during climate transitions. Further constraints on the geographical extent of this process will impact our understanding of iron-carbon feedbacks during major deglaciations.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Ferro/química , Minerais/análise , Regiões Antárticas , Bactérias/química , Bactérias/isolamento & purificação , Sequestro de Carbono , Mudança Climática , Sedimentos Geológicos/química , Camada de Gelo/química , Oxigênio/química , Água do Mar/química , Água do Mar/microbiologia , Temperatura
12.
Int J Syst Evol Microbiol ; 69(12): 3837-3842, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31556866

RESUMO

Two Gram-stain-negative, facultative anaerobic chemoheterotrophic, pink-coloured, rod-shaped and non-motile bacterial strains, PAMC 29128 and PAMC 29148T, were isolated from lichen. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strains PAMC 29128 and PAMC 29148T belong to lichen-associated Rhizobiales-1 (LAR1), an uncultured phylogenetic lineage of the order Rhizobiales and the most closely related genera were Methylocapsa (<93.9 %) and Methylosinus (<93.8 %). The results of phylogenomic and genomic relatedness analyses also showed that strains PAMC 29128 and PAMC 29148T were clearly distinguished from other species in the order Rhizobiales with average nucleotide identity values of <71.4 % and genome-to-genome distance values of <22.7 %. Genomic analysis revealed that strains PAMC 29128 and PAMC 29148T did not contain genes involved in atmospheric nitrogen fixation or utilization of carbon compounds such as methane and methanol. Strains PAMC 29128 and PAMC 29148T were able to utilize certain monosaccharides, disaccharides, sugar alcohols and other organic compounds as a sole carbon source. The major fatty acids (>10 %) were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 33.7-39.7 %), summed feature 3 (C16 : 1 ω7c and/or C 16:1 ω6c; 25.2-25.4 %) and C19 :0 cyclo ω8c (11.9-15.4 %). The major respiratory quinone was Q-10. The genomic DNA G+C contents of PAMC 29128 and PAMC 29148T were 63.0 and 63.1 mol%, respectively. Their distinct phylogenetic position and some physiological characteristics support the proposal of Lichenihabitans gen. nov., with the type species Lichenihabitans psoromatis sp. nov. (type strain, PAMC 29148T=KCCM 43293T=JCM 33311T). Lichenihabitantaceae fam. nov. is also proposed.


Assuntos
Alphaproteobacteria/classificação , Líquens/microbiologia , Filogenia , Alphaproteobacteria/isolamento & purificação , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Environ Sci Technol ; 53(15): 8621-8630, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31310508

RESUMO

The sources of primary and secondary aerosols in the Arctic are still poorly known. A number of surface seawater samples-with varying degrees of Arctic riverine and sea ice influences-were used in a sea spray generation chamber to test them for their potential to produce sea spray aerosols (SSA) and cloud condensation nuclei (CCN). Our interdisciplinary data showed that both sea salt and organic matter (OM) significantly influenced the SSA production. The number concentration of SSA in the coastal samples was negatively correlated with salinity and positively correlated with a number of OM tracers, including dissolved and chromophoric organic carbon (DOC, CDOM), marine microgels and chlorophyll a (Chl-a) but not for viral and bacterial abundances; indicating that OM of riverine origin enhances primary aerosol production. When all samples were considered, transparent exopolymer particles (TEP) were found to be the best indicator correlating positively with the ratio number concentration of SSA/salinity. CCN efficiency was not observed to differ between the SSA from the various samples, despite differences in organic characteristics. It is suggested that the large amount of freshwater from river runoff have a substantial impact on primary aerosols production mechanisms, possibly affecting the cloud radiative forcing.


Assuntos
Clorofila A , Água do Mar , Aerossóis , Regiões Árticas , Rios
14.
Int J Syst Evol Microbiol ; 69(8): 2415-2423, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31145675

RESUMO

Two Gram-stain-negative, rod-shaped, facultatively anaerobic, iron-reducing bacterial strains, designated M2T and R106, were isolated from pelagic surface-sediment of the Ross Sea, Antarctica. The 16S rRNA gene sequence analysis revealed that strains M2T and R106 were affiliated to the genus Shewanellaand formed a distinct subline in a robust clade encompassing Shewanella vesiculosa, Shewanella livingstonensis, Shewanella arcticaand Shewanella frigidimarinawith a range of sequence similarities of 98.1-98.9 %. Overall genome relatedness indices indicated that M2T and R106 represented a single genomic species, which was clearly distinguishable from the phylogenetically close relatives with lower values of species delineation thresholds. Cells of M2T grew optimally at 10-15 °C and pH 6.5 in the presence of 3.0-4.0 % (w/v) sea salts. The polar lipids of M2T comprised phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and an unidentified phospholipid. Quinones were Q-7, Q-8, MK-7 and MMK-7. The major cellular fatty acids (>10 %) were C16 : 1ω7c and/or C16 : 1ω6c, C16 : 0 and C17 : 1ω8c. The DNA G+C content was 42.2 mol%. On the basis of the phenotypic, phylogenetic, genomic and chemotaxonomic features, we propose the name Shewanellapsychromarinicola sp. nov. with the type strain M2T (=KCCM 43257T =JCM 32090T) and the reclassification of S. arcticaas a later heterotypic synonym of S. frigidimarina.


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Shewanella/classificação , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Shewanella/isolamento & purificação , Ubiquinona/química
15.
Front Microbiol ; 9: 2909, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555444

RESUMO

Candidate phylum Atribacteria JS1 lineage is one of the predominant bacterial groups in anoxic subseafloor sediments, especially in organic-rich or gas hydrate-containing sediments. However, due to the lack of axenic culture representatives, metabolic potential and biogeochemical roles of this phylum have remained elusive. Here, we examined the microbial communities of marine sediments of the Ross Sea, Antarctica, and found candidate phylum Atribacteria JS1 lineage was the most abundant candidate phylum accounting for 9.8-40.8% of the bacterial communities with a single dominant operational taxonomic unit (OTU). To elucidate the metabolic potential and ecological function of this species, we applied a single-cell genomic approach and obtained 18 single-cell amplified genomes presumably from a single species that was consistent with the dominant OTU throughout the sediments. The composite genome constructed by co-assembly showed the highest genome completeness among available Atribacteria JS1 genomes. Metabolic reconstruction suggested fermentative potential using various substrates and syntrophic acetate oxidation coupled with hydrogen or formate scavenging methanogens. This metabolic potential supports the predominance of Atribacteria JS1 in anoxic environments expanding our knowledge of the ecological function of this uncultivated group.

16.
BMC Genomics ; 19(1): 625, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134835

RESUMO

BACKGROUND: Pontimonas salivibrio strain CL-TW6T (=KCCM 90105 = JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized. RESULTS: The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G + C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions. CONCLUSIONS: Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.


Assuntos
Actinomycetales/crescimento & desenvolvimento , Actinomycetales/genética , Adaptação Biológica/genética , Água do Mar , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Técnicas de Tipagem Bacteriana , DNA Bacteriano/análise , DNA Bacteriano/genética , Ecossistema , Estuários , Genoma Bacteriano , Filogenia , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Análise de Sequência de DNA
17.
Int J Syst Evol Microbiol ; 67(7): 2397-2402, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708058

RESUMO

A taxonomic study was conducted on strain soj2014T, which was isolated from the surface water of a polynya in the Antarctic Sea. Comparative 16S rRNA gene sequence analysis showed that strain soj2014T belongs to the family Kiloniellaceae and is closely related to Kiloniella spongiae MEBiC09566T, 'Kiloniella litopenaei' P1-1T and Kiloniella laminariae LD81T (98.0 %, 97.8 % and 96.2 % 16S rRNA gene sequence similarity, respectively). The DNA-DNA hybridization values between strain soj2014T and closely related strains were below 28.6 %. The G+C content of the genomic DNA of strain soj2014T was 45.5 mol%. The predominant cellular fatty acids were summed feature 8 (composed of C18 : 1ω6c/C18 : 1ω7c, 57.0 %) and summed feature 3 (composed of C16 : 1ω6c/C16 : 1ω7c, 23.5 %). Strain soj2014T was Gram-stain-negative, slightly curved, spiral-shaped, and motile with a single polar flagellum. The strain grew at 0-30 °C (optimum, 25 °C), in 1.5-5.1 % (w/v) NaCl (optimum, 2.1-2.4 %) and at pH 5.5-9.5 (optimum, 7.5-8.0). It also had differential carbohydrate utilization traits and enzyme activities compared with closely related strains. Based on these phylogenetic, phenotypic and chemotaxonomic analyses, strain soj2014T represents a distinct species, separable from the reference strains, and is, therefore, proposed as a novel species, Kiloniella antarctica sp. nov. The type strain is soj2014T (=KCTC 42186T=JCM 30386T).


Assuntos
Alphaproteobacteria/classificação , Filogenia , Água do Mar/microbiologia , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Food Microbiol ; 61: 72-82, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27697172

RESUMO

Prokaryotes were extracted from skates and fermented skates purchased from fish markets and a local manufacturer in South Korea. The prokaryotic community composition of skates and fermented skates was investigated using 16S rRNA pyrosequencing. The ranges for pH and salinity of the grinded tissue extract from fermented skates were 8.4-8.9 and 1.6-6.6%, respectively. Urea and ammonia concentrations were markedly low and high, respectively, in fermented skates compared to skates. Species richness was increased in fermented skates compared to skates. Dominant and predominant bacterial groups present in the fermented skates belonged to the phylum Firmicutes, whereas those in skates belonged to Gammaproteobacteria. The major taxa found in Firmicutes were Atopostipes (Carnobacteriaceae, Lactobacillales) and/or Tissierella (Tissierellaceae, Tissierellales). A combination of RT-PCR and pyrosequencing for active bacterial composition showed that the dominant taxa i.e., Atopostipes and Tissierella, were active in fermented skate. Those dominant taxa are possibly marine lactic acid bacteria. Marine bacteria of the taxa Lactobacillales and/or Clostridia seem to be important in alkaline fermentation of skates.


Assuntos
Bactérias/isolamento & purificação , Fermentação , Consórcios Microbianos , Alimentos Marinhos/microbiologia , Rajidae/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Clostridium/genética , Clostridium/isolamento & purificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Consórcios Microbianos/genética , República da Coreia
19.
J Microbiol ; 54(11): 713-723, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27796925

RESUMO

The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.


Assuntos
Consórcios Microbianos , Microbiologia do Solo , Solo/química , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Alaska , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/análise , Mudança Climática , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Concentração de Íons de Hidrogênio , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Pergelissolo/microbiologia , Tundra
20.
Antonie Van Leeuwenhoek ; 109(10): 1345-52, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27418263

RESUMO

The taxonomic relationship between Halomonas sinaiensis DSM 18067(T) and Halomonas caseinilytica JCM 14802(T) has not been established, despite the high similarity (99.6 %) of their 16S rRNA gene sequences. To clarify their taxonomic positions, a polyphasic approach was applied to both type strains. Genomic relatedness analyses between H. sinaiensis DSM 18067(T) and H. caseinilytica JCM 14802(T) resulted in an average nucleotide identity of 99.5 % and an estimated DNA-DNA hybridization of 96.1 % by the genome-to-genome distance calculator, indicating that they belong to a single species. Phenotypic and chemotaxonomic characteristics showed no pronounced differences between the two type strains. Based on the results of this polyphasic study, it is proposed that H. caseinilytica JCM 14802(T) is a later heterotypic synonym of H. sinaiensis DSM 18067(T). An emended description for the species H. sinaiensis is given.


Assuntos
Halomonas/classificação , Genoma Bacteriano , Halomonas/genética , Japão , Tipagem Molecular , Filogenia , RNA Bacteriano , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...